Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 982
Filtrar
1.
Proc Jpn Acad Ser B Phys Biol Sci ; 100(4): 264-280, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38599847

RESUMO

Self-incompatibility (SI) is a mechanism for preventing self-fertilization in flowering plants. SI is controlled by a single S-locus with multiple haplotypes (S-haplotypes). When the pistil and pollen share the same S-haplotype, the pollen is recognized as self and rejected by the pistil. This review introduces our research on Brassicaceae and Solanaceae SI systems to identify the S-determinants encoded at the S-locus and uncover the mechanisms of self/nonself-discrimination and pollen rejection. The recognition mechanisms of SI systems differ between these families. A self-recognition system is adopted by Brassicaceae, whereas a collaborative nonself-recognition system is used by Solanaceae. Work by our group and subsequent studies indicate that plants have evolved diverse SI systems.


Assuntos
Brassicaceae , Solanaceae , Humanos , Brassicaceae/genética , Solanaceae/genética , Plantas , Pólen , Flores , Proteínas de Plantas
2.
PLoS One ; 19(4): e0302292, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38626181

RESUMO

Proteins containing domain of unknown function (DUF) are prevalent in eukaryotic genome. The DUF1216 proteins possess a conserved DUF1216 domain resembling to the mediator protein of Arabidopsis RNA polymerase II transcriptional subunit-like protein. The DUF1216 family are specifically existed in Brassicaceae, however, no comprehensive evolutionary analysis of DUF1216 genes have been performed. We performed a first comprehensive genome-wide analysis of DUF1216 proteins in Brassicaceae. Totally 284 DUF1216 genes were identified in 27 Brassicaceae species and classified into four subfamilies on the basis of phylogenetic analysis. The analysis of gene structure and conserved motifs revealed that DUF1216 genes within the same subfamily exhibited similar intron/exon patterns and motif composition. The majority members of DUF1216 genes contain a signal peptide in the N-terminal, and the ninth position of the signal peptide in most DUF1216 is cysteine. Synteny analysis revealed that segmental duplication is a major mechanism for expanding of DUF1216 genes in Brassica oleracea, Brassica juncea, Brassica napus, Lepidium meyneii, and Brassica carinata, while in Arabidopsis thaliana and Capsella rubella, tandem duplication plays a major role in the expansion of the DUF1216 gene family. The analysis of Ka/Ks (non-synonymous substitution rate/synonymous substitution rate) ratios for DUF1216 paralogous indicated that most of gene pairs underwent purifying selection. DUF1216 genes displayed a specifically high expression in reproductive tissues in most Brassicaceae species, while its expression in Brassica juncea was specifically high in root. Our studies offered new insights into the phylogenetic relationships, gene structures and expressional patterns of DUF1216 members in Brassicaceae, which provides a foundation for future functional analysis.


Assuntos
Arabidopsis , Brassicaceae , Brassicaceae/genética , Duplicação Gênica , Filogenia , Evolução Molecular , Genoma de Planta , Arabidopsis/genética , Proteínas de Plantas/genética , Proteínas de Plantas/química , Mostardeira/genética , Sinais Direcionadores de Proteínas/genética , Regulação da Expressão Gênica de Plantas
3.
Methods Mol Biol ; 2787: 39-53, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38656480

RESUMO

The study of natural variations in photosynthesis in the Brassicaceae family offers the possibility of identifying mechanisms to enhance photosynthetic efficiency in crop plants. Indeed, this family, and particularly its tribe Brassiceae, has been shown to harbor species that have a higher-than-expected photosynthetic efficiency, possibly as a result of a complex evolutionary history. Over the past two decades, methods have been developed to measure photosynthetic efficiency based on chlorophyll fluorescence. Chlorophyll fluorescence measurements are performed with special cameras, such as the FluorCams, which can be included in robotic systems to create high-throughput phenotyping platforms. While these platforms have so far demonstrated high efficiency in measuring small model species like Arabidopsis thaliana, they have the drawback of limited adaptability to accommodate different plant sizes. As a result, the range of species that can be analyzed is restricted. This chapter presents our approach to analyze the photosynthetic parameters: ϕPSII and Fv/Fm for a panel of Brassicaceae species, including a high-photosynthesis species, Hirschfeldia incana, and the adaptations to the phenotyping platform that are required to accommodate this varied group of plants.


Assuntos
Brassicaceae , Clorofila , Fotossíntese , Brassicaceae/fisiologia , Brassicaceae/metabolismo , Brassicaceae/genética , Clorofila/metabolismo , Ensaios de Triagem em Larga Escala/métodos , Fenótipo , Fluorescência
4.
Cell Rep ; 43(3): 113913, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38442016

RESUMO

The self-incompatibility system evolves in angiosperms to promote cross-pollination by rejecting self-pollination. Here, we show the involvement of Exo84c in the SI response of both Brassica napus and Arabidopsis. The expression of Exo84c is specifically elevated in stigma during the SI response. Knocking out Exo84c in B. napus and SI Arabidopsis partially breaks down the SI response. The SI response inhibits both the protein secretion in papillae and the recruitment of the exocyst complex to the pollen-pistil contact sites. Interestingly, these processes can be partially restored in exo84c SI Arabidopsis. After incompatible pollination, the turnover of the exocyst-labeled compartment is enhanced in papillae. However, this process is perturbed in exo84c SI Arabidopsis. Taken together, our results suggest that Exo84c regulates the exocyst complex vacuolar degradation during the SI response. This process is likely independent of the known SI pathway in Brassicaceae to secure the SI response.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Brassicaceae , Brassicaceae/genética , Brassicaceae/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Pólen/metabolismo , Transporte Proteico , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
5.
Plant Physiol Biochem ; 208: 108470, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38422576

RESUMO

Camelinasativa has considerable promise as a dedicated industrial oilseed crop. Its oil-based blends have been tested and approved as liquid transportation fuels. Previously, we utilized metabolomic and transcriptomic profiling approaches and identified metabolic bottlenecks that control oil production and accumulation in seeds. Accordingly, we selected candidate genes for the metabolic engineering of Camelina. Here we targeted the overexpression of Camelina PDCT gene, which encodes the phosphatidylcholine: diacylglycerol cholinephosphotransferase enzyme. PDCT is proposed as a gatekeeper responsible for the interconversions of diacylglycerol (DAG) and phosphatidylcholine (PC) pools and has the potential to increase the levels of TAG in seeds. To confirm whether increased CsPDCT activity in developing Camelina seeds would enhance carbon flux toward increased levels of TAG and alter oil composition, we overexpressed the CsPDCT gene under the control of the seed-specific phaseolin promoter. Camelina transgenics exhibited significant increases in seed yield (19-56%), seed oil content (9-13%), oil yields per plant (32-76%), and altered polyunsaturated fatty acid (PUFA) content compared to their parental wild-type (WT) plants. Results from [14C] acetate labeling of Camelina developing embryos expressing CsPDCT in culture indicated increased rates of radiolabeled fatty acid incorporation into glycerolipids (up to 64%, 59%, and 43% higher in TAG, DAG, and PC, respectively), relative to WT embryos. We conclude that overexpression of PDCT appears to be a positive strategy to achieve a synergistic effect on the flux through the TAG synthesis pathway, thereby further increasing oil yields in Camelina.


Assuntos
Brassicaceae , Fosfatidilcolinas , Fosfatidilcolinas/metabolismo , Triglicerídeos/metabolismo , Brassicaceae/genética , Brassicaceae/metabolismo , Ácidos Graxos/metabolismo , Sementes/genética , Sementes/metabolismo , Ciclo do Carbono , Óleos de Plantas/metabolismo , Plantas Geneticamente Modificadas/metabolismo
6.
Int J Mol Sci ; 25(3)2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38339216

RESUMO

Climate change is expected to intensify the occurrence of abiotic stress in plants, such as hypoxia and salt stresses, leading to the production of reactive oxygen species (ROS), which need to be effectively managed by various oxido-reductases encoded by the so-called ROS gene network. Here, we studied six oxido-reductases families in three Brassicaceae species, Arabidopsis thaliana as well as Nasturtium officinale and Eutrema salsugineum, which are adapted to hypoxia and salt stress, respectively. Using available and new genomic data, we performed a phylogenomic analysis and compared RNA-seq data to study genomic and transcriptomic adaptations. This comprehensive approach allowed for the gaining of insights into the impact of the adaptation to saline or hypoxia conditions on genome organization (gene gains and losses) and transcriptional regulation. Notably, the comparison of the N. officinale and E. salsugineum genomes to that of A. thaliana highlighted changes in the distribution of ohnologs and homologs, particularly affecting class III peroxidase genes (CIII Prxs). These changes were specific to each gene, to gene families subjected to duplication events and to each species, suggesting distinct evolutionary responses. The analysis of transcriptomic data has allowed for the identification of genes related to stress responses in A. thaliana, and, conversely, to adaptation in N. officinale and E. salsugineum.


Assuntos
Arabidopsis , Brassicaceae , Brassicaceae/genética , Arabidopsis/genética , Espécies Reativas de Oxigênio , Redes Reguladoras de Genes , Oxirredutases/genética , Hipóxia , Regulação da Expressão Gênica de Plantas , Estresse Fisiológico
7.
BMC Plant Biol ; 24(1): 111, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38360561

RESUMO

BACKGROUND: The ephemeral flora of northern Xinjiang, China, plays an important role in the desert ecosystems. However, the evolutionary history of this flora remains unclear. To gain new insights into its origin and evolutionary dynamics, we comprehensively sampled ephemeral plants of Brassicaceae, one of the essential plant groups of the ephemeral flora. RESULTS: We reconstructed a phylogenetic tree using plastid genomes and estimated their divergence times. Our results indicate that ephemeral species began to colonize the arid areas in north Xinjiang during the Early Miocene and there was a greater dispersal of ephemeral species from the surrounding areas into the ephemeral community of north Xinjiang during the Middle and Late Miocene, in contrast to the Early Miocene or Pliocene periods. CONCLUSIONS: Our findings, together with previous studies, suggest that the ephemeral flora originated in the Early Miocene, and species assembly became rapid from the Middle Miocene onwards, possibly attributable to global climate changes and regional geological events.


Assuntos
Brassicaceae , Ecossistema , Filogenia , Brassicaceae/genética , China , Plastídeos/genética
8.
Pestic Biochem Physiol ; 198: 105708, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38225062

RESUMO

Descurainia sophia (flixweed) is a troublesome weed in winter wheat fields in North China. Resistant D. sophia populations with different acetolactate synthetase (ALS) mutations have been reported in recent years. In addition, metabolic resistance to ALS-inhibiting herbicides has also been identified. In this study, we collected and purified two resistant D. sophia populations (R1 and R2), which were collected from winter wheat fields where tribenuron-methyl provided no control of D. sophia at 30 g a.i. ha-1. Whole plant bioassay and ALS activity assay results showed the R1 and R2 populations had evolved high-level resistance to tribenuron-methyl and florasulam and cross-resistance to imazethapyr and pyrithiobac­sodium. The two ALS genes were cloned from the leaves of R1 and R2 populations, ALS1 (2004 bp) and ALS2 (1998 bp). A mutation of Trp 574 to Leu in ALS1 was present in both R1 and R2. ALS1 and ALS2 were cloned from R1 and R2 populations respectively and transferred into Arabidopsis thaliana. Homozygous T3 transgenic seedlings with ALS1 of R1 or R2 were resistant to ALS-inhibiting herbicides and the resistant levels were the same. Transgenic seedlings with ALS2 from R1 or R2 were susceptible to ALS-inhibiting herbicides. Treatment with cytochrome P450 inhibitor malathion decreased the resistant levels to tribenuron-methyl in R1 and R2. RNA-Seq was used to identify target cytochrome P450 genes possibly involved in resistance to ALS-inhibiting herbicides. There were five up-regulated differentially expressed cytochrome P450 genes: CYP72A15, CYP83B1, CYP81D8, CYP72A13 and CYP71A12. Among of them, CYP72A15 had the highest expression level in R1 and R2 populations. The R1 and R2 populations of D. sophia have evolved resistance to ALS-inhibiting herbicides due to Trp 574 Leu mutation in ALS1 and possibly other mechanisms. The resistant function of CYP72A15 needs further research.


Assuntos
Acetolactato Sintase , Sulfonatos de Arila , Brassicaceae , Herbicidas , Acetolactato Sintase/antagonistas & inibidores , Acetolactato Sintase/metabolismo , Brassicaceae/efeitos dos fármacos , Brassicaceae/genética , Sistema Enzimático do Citocromo P-450/genética , Resistência a Herbicidas/genética , Herbicidas/farmacologia , Mutação
9.
J Exp Bot ; 75(8): 2451-2469, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38263359

RESUMO

In higher plants, sexual reproduction is characterized by meiosis of the first cells of the germlines, and double fertilization of the egg and central cell after gametogenesis. In contrast, in apomicts of the genus Boechera, meiosis is omitted or altered and only the central cell requires fertilization, while the embryo forms parthenogenetically from the egg cell. To deepen the understanding of the transcriptional basis underlying these differences, we applied RNA-seq to compare expression in reproductive tissues of different Boechera accessions. This confirmed previous evidence of an enrichment of RNA helicases in plant germlines. Furthermore, few RNA helicases were differentially expressed in female reproductive ovule tissues harboring mature gametophytes from apomictic and sexual accessions. For some of these genes, we further found evidence for a complex recent evolutionary history. This included a homolog of Arabidopsis thaliana FASCIATED STEM4 (FAS4). In contrast to AtFAS4, which is a single-copy gene, FAS4 is represented by three homologs in Boechera, suggesting a potential for subfunctionalization to modulate reproductive development. To gain first insights into functional roles of FAS4, we studied Arabidopsis lines carrying mutant alleles. This identified the crucial importance of AtFAS4 for reproduction, as we observed developmental defects and arrest during male and female gametogenesis.


Assuntos
Apomixia , Arabidopsis , Brassicaceae , Brassicaceae/genética , Arabidopsis/genética , Reprodução/genética , Evolução Biológica , Ciclo Celular , Apomixia/genética
10.
Plant Cell Rep ; 43(2): 36, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38200362

RESUMO

KEY MESSAGE: Detailed analyses of 16 genomes identified a remarkable acceleration of mutation rate, hence mitochondrial sequence and structural heterogeneity, in Meniocus linifolius (Brassicaceae). The powerhouse, mitochondria, in plants feature high levels of structural variation, while the encoded genes are normally conserved. However, the substitution rates and spectra of mitochondria DNA within the Brassicaceae, a family with substantial scientific and economic importance, have not been adequately deciphered. Here, by analyzing three newly assembled and 13 known mitochondrial genomes (mitogenomes), we report the highly variable genome structure and mutation rates in Brassicaceae. The genome sizes and GC contents are 196,604 bp and 46.83%, 288,122 bp and 44.79%, and 287,054 bp and 44.93%, for Meniocus linifolius (Mli), Crucihimalaya lasiocarpa (Cla), and Lepidium sativum (Lsa), respectively. In total, 29, 33, and 34 protein-coding genes (PCGs) and 14, 18, and 18 tRNAs are annotated for Mli, Cla, and Lsa, respectively, while all mitogenomes contain one complete circular molecule with three rRNAs and abundant RNA editing sites. The Mli mitogenome features four conformations likely mediated by the two pairs of long repeats, while at the same time seems to have an unusual evolutionary history due to higher GC content, loss of more genes and sequences, but having more repeats and plastid DNA insertions. Corroborating with these, an ambiguous phylogenetic position with long branch length and elevated synonymous substitution rate in nearly all PCGs are observed for Mli. Taken together, our results reveal a high level of mitogenome heterogeneity at the family level and provide valuable resources for further understanding the evolutionary pattern of organelle genomes in Brassicaceae.


Assuntos
Brassicaceae , Genoma Mitocondrial , Genoma Mitocondrial/genética , Brassicaceae/genética , Filogenia , Evolução Biológica , DNA Mitocondrial/genética
11.
BMC Genomics ; 25(1): 29, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38172664

RESUMO

BACKGROUND: Orychophragmus violaceus is a potentially important industrial oilseed crop due to the two 24-carbon dihydroxy fatty acids (diOH-FA) that was newly identified from its seed oil via a 'discontinuous elongation' process. Although many research efforts have focused on the diOH-FA biosynthesis mechanism and identified the potential co-expressed diacylglycerol acyltranferase (DGAT) gene associated with triacylglycerol (TAG)-polyestolides biosynthesis, the dynamics of metabolic changes during seed development of O. violaceus as well as its associated regulatory network changes are poorly understood. RESULTS: In this study, by combining metabolome and transcriptome analysis, we identified that 1,003 metabolites and 22,479 genes were active across four stages of seed development, which were further divided into three main clusters based on the patterns of metabolite accumulation and/or gene expression. Among which, cluster2 was mostly related to diOH-FA biosynthesis pathway. We thus further constructed transcription factor (TF)-structural genes regulatory map for the genes associated with the flavonoids, fatty acids and diOH-FA biosynthesis pathway in this cluster. In particular, several TF families such as bHLH, B3, HD-ZIP, MYB were found to potentially regulate the metabolism associated with the diOH-FA pathway. Among which, multiple candidate TFs with promising potential for increasing the diOH-FA content were identified, and we further traced the evolutionary history of these key genes among species of Brassicaceae. CONCLUSION: Taken together, our study provides new insight into the gene resources and potential relevant regulatory mechanisms of diOH-FA biosynthesis uniquely in seeds of O. violaceus, which will help to promote the downstream breeding efforts of this potential oilseed crop and advance the bio-lubricant industry.


Assuntos
Brassicaceae , Melhoramento Vegetal , Humanos , Perfilação da Expressão Gênica , Brassicaceae/genética , Brassicaceae/metabolismo , Sementes/metabolismo , Ácidos Graxos/metabolismo , Óleos de Plantas/análise , Regulação da Expressão Gênica de Plantas
12.
Plant Biol (Stuttg) ; 26(2): 270-281, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38168881

RESUMO

C3 -C4 intermediate photosynthesis has evolved at least five times convergently in the Brassicaceae, despite this family lacking bona fide C4 species. The establishment of this carbon concentrating mechanism is known to require a complex suite of ultrastructural modifications, as well as changes in spatial expression patterns, which are both thought to be underpinned by a reconfiguration of existing gene-regulatory networks. However, to date, the mechanisms which underpin the reconfiguration of these gene networks are largely unknown. In this study, we used a pan-genomic association approach to identify genomic features that could confer differential gene expression towards the C3 -C4 intermediate state by analysing eight C3 species and seven C3 -C4 species from five independent origins in the Brassicaceae. We found a strong correlation between transposable element (TE) insertions in cis-regulatory regions and C3 -C4 intermediacy. Specifically, our study revealed 113 gene models in which the presence of a TE within a gene correlates with C3 -C4 intermediate photosynthesis. In this set, genes involved in the photorespiratory glycine shuttle are enriched, including the glycine decarboxylase P-protein whose expression domain undergoes a spatial shift during the transition to C3 -C4 photosynthesis. When further interrogating this gene, we discovered independent TE insertions in its upstream region which we conclude to be responsible for causing the spatial shift in GLDP1 gene expression. Our findings hint at a pivotal role of TEs in the evolution of C3 -C4 intermediacy, especially in mediating differential spatial gene expression.


Assuntos
Brassicaceae , Brassicaceae/genética , Brassicaceae/metabolismo , Elementos de DNA Transponíveis/genética , Glicina/genética , Glicina/metabolismo , Fotossíntese/genética , Glicina Desidrogenase (Descarboxilante)/genética , Glicina Desidrogenase (Descarboxilante)/metabolismo , Folhas de Planta/metabolismo
13.
Evolution ; 78(1): 127-145, 2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-37919254

RESUMO

Flea beetles of the genus Psylliodes have evolved specialized interactions with plant species belonging to several distantly related families, mainly Brassicaceae, Solanaceae, and Fagaceae. This diverse host use indicates that Psylliodes flea beetles are able to cope with different chemical defense metabolites, including glucosinolates, the characteristic defense metabolites of Brassicaceae. Here we investigated the evolution of host use and the emergence of a glucosinolate-specific detoxification mechanism in Psylliodes flea beetles. In phylogenetic analyses, Psylliodes species clustered into four major clades, three of which contained mainly species specialized on either Brassicaceae, Solanaceae, or Fagaceae. Most members of the fourth clade have broader host use, including Brassicaceae and Poaceae as major host plant families. Ancestral state reconstructions suggest that Psylliodes flea beetles were initially associated with Brassicaceae and then either shifted to Solanaceae or Fagaceae, or expanded their host repertoire to Poaceae. Despite a putative ancestral association with Brassicaceae, we found evidence that the evolution of glucosinolate-specific detoxification enzymes coincides with the radiation of Psylliodes on Brassicaceae, suggesting that these are not required for using Brassicaceae as hosts but could improve the efficiency of host use by specialized Psylliodes species.


Assuntos
Brassicaceae , Besouros , Animais , Brassicaceae/genética , Brassicaceae/metabolismo , Besouros/genética , Filogenia , Glucosinolatos/metabolismo
14.
Plant Commun ; 5(2): 100719, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-37718509

RESUMO

Plants have evolved diverse self-incompatibility (SI) systems for outcrossing. Since Darwin's time, considerable progress has been made toward elucidating this unrivaled reproductive innovation. Recent advances in interdisciplinary studies and applications of biotechnology have given rise to major breakthroughs in understanding the molecular pathways that lead to SI, particularly the strikingly different SI mechanisms that operate in Solanaceae, Papaveraceae, Brassicaceae, and Primulaceae. These best-understood SI systems, together with discoveries in other "nonmodel" SI taxa such as Poaceae, suggest a complex evolutionary trajectory of SI, with multiple independent origins and frequent and irreversible losses. Extensive exploration of self-/nonself-discrimination signaling cascades has revealed a comprehensive catalog of male and female identity genes and modifier factors that control SI. These findings also enable the characterization, validation, and manipulation of SI-related factors for crop improvement, helping to address the challenges associated with development of inbred lines. Here, we review current knowledge about the evolution of SI systems, summarize key achievements in the molecular basis of pollen‒pistil interactions, discuss potential prospects for breeding of SI crops, and raise several unresolved questions that require further investigation.


Assuntos
Brassicaceae , Melhoramento Vegetal , Plantas/genética , Poaceae , Brassicaceae/genética
15.
Plant Cell Physiol ; 65(1): 20-34, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-37758243

RESUMO

Salinity and phosphate (Pi) starvation are the most common abiotic stresses that threaten crop productivity. Salt cress (Eutrema salsugineum) displays good tolerance to both salinity and Pi limitation. Previously, we found several Phosphate Transporter (PHT) genes in salt cress upregulated under salinity. Here, EsPHT1;5 induced by both low Pi (LP) and salinity was further characterized. Overexpression of EsPHT1;5 in salt cress enhanced plant tolerance to LP and salinity, while the knock-down lines exhibited growth retardation. The analysis of phosphorus (P) content and shoot/root ratio of total P in EsPHT1;5-overexpressing salt cress seedlings and the knock-down lines as well as arsenate uptake assays suggested the role of EsPHT1;5 in Pi acquisition and root-shoot translocation under Pi limitation. In addition, overexpression of EsPHT1;5 driven by the native promoter in salt cress enhanced Pi mobilization from rosettes to siliques upon a long-term salt treatment. Particularly, the promoter of EsPHT1;5 outperformed that of AtPHT1;5 in driving gene expression under salinity. We further identified a transcription factor EsANT, which negatively regulated EsPHT1;5 expression and plant tolerance to LP and salinity. Taken together, EsPHT1;5 plays an integral role in Pi acquisition and distribution in plant response to LP and salt stress. Further, EsANT may be involved in the cross-talk between Pi starvation and salinity signaling pathways. This work provides further insight into the mechanism underlying high P use efficiency in salt cress in its natural habitat, and evidence for a link between Pi and salt signaling.


Assuntos
Arabidopsis , Brassicaceae , Brassicaceae/genética , Arabidopsis/genética , Salinidade , Regulação da Expressão Gênica de Plantas , Fosfatos/metabolismo , Raízes de Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
16.
Sci Data ; 10(1): 856, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-38040751

RESUMO

Hyperaccumulators are a group of plant species that accumulate high concentrations of one or more metal(loid)s in their above-ground tissues without showing any signs of toxicity. Several hyperaccumulating species belong to the Brassicaceae family, among them the Cd and Zn hyperaccumulator Noccaea praecox. In this paper, we present de novo transcriptome assembled from two naturally occurring N. praecox populations growing in (i) metal-enriched soil and (ii) soil non-contaminated with metals (control site). Total RNA was extracted from the leaves of both populations. We obtained 801,935,101 reads, which were successfully assembled and annotated. The resulting assembly contains 135,323 transcripts, with 103,396 transcripts (76.4%) annotated with at least one function and encoding 53,142 putative proteins. Due to its close relationship with the hyperaccumulating model species N. cearulescens, it will be possible to derive protein functions from sequence comparisons with this species. Comparisons will highlight common and differing pathways of metal acquisition, storage, and detoxification which will allow us to expand our knowledge of these processes.


Assuntos
Brassicaceae , Metais , Transcriptoma , Brassicaceae/genética , Estudos de Associação Genética , Solo
17.
Plant Cell Rep ; 43(1): 14, 2023 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-38135793

RESUMO

KEY MESSAGE: Overexpressing CsGGCT2;1 in Camelina enhances arsenic tolerance, reducing arsenic accumulation by 40-60%. Genetically modified Camelina can potentially thrive on contaminated lands and help safeguard food quality and sustainable food and biofuel production. Environmental arsenic contamination is a serious global issue that adversely affects human health and diminishes the quality of harvested produce. Glutathione (GSH) is known to bind and detoxify arsenic and other toxic metals. A steady level of GSH is maintained within cells via the γ-glutamyl cycle. The γ-glutamyl cyclotransferases (GGCTs) have previously been shown to be involved in GSH degradation and increased tolerance to toxic metals in plants. In this study, we characterized the GGCT2;1 homolog from Camelina sativa for its role in arsenic tolerance and accumulation. Overexpression of CsGGCT2;1 in Camelina under CaMV35S constitutive promoter resulted in strong tolerance to arsenite (AsIII). The overexpression (OE) lines had 2.6-3.5-fold higher shoots and sevenfold to tenfold enhanced root biomass on media supplemented with AsIII, relative to wild-type plants. The CsGGCT2;1 OE lines accumulated 40-60% less arsenic in root and shoot tissues compared to wild-type plants. Further, the OE lines had ~ twofold higher chlorophyll content and 35% lesser levels of malondialdehyde (MDA), an indicator of membrane damage via lipid peroxidation. There was a slight but non-significant increase in 5-oxoproline (5-OP), a product of GSH degradation, in OE lines. However, the transcript levels of Oxoprolinase 1 (OXP1) were upregulated, indicating the accelerated conversion of 5-OP to glutamate, which is further utilized for the resynthesis of GSH to maintain GSH homeostasis. Overall, this research suggests that genetically modified Camelina may have the potential for cultivation on contaminated marginal lands to reduce As accumulation; thereby could help in addressing food safety issues as well as future food and biofuel needs.


Assuntos
Arsênio , Brassicaceae , Humanos , Arsênio/toxicidade , Biocombustíveis , Brassicaceae/genética , Brassicaceae/metabolismo , Glutationa/metabolismo , Homeostase
18.
Int J Mol Sci ; 24(21)2023 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-37958926

RESUMO

Wild species field cress (Lepidium campestre) has favorable agronomic traits, making it a good candidate for future development as an oil and catch crop. However, the species is very prone to pod shatter, resulting in severe yield losses. This is one of the important agronomic traits that needs to be improved in order to make this species economically viable. In this study, we cloned the L. campestre INDEHISCENT (LcIND) gene and prepared two LcIND-RNAi constructs with the IND promoter (long 400 bp and short 200 bp) from Arabidopsis. A number of stable transgenic lines were developed and evaluated in terms of pod shatter resistance. The majority of the transgenic lines showed increased resistance to pod shatter compared to the wild type, and this resistance was maintained in four subsequent generations. The downregulation of the LcIND gene by RNAi in the transgenic lines was confirmed by qRT-PCR analysis on T3 lines. Southern blot analysis showed that most of the analyzed lines had a single-copy integration of the transgene, which is desirable for further use. Our results show that it is possible to generate stable transgenic lines with desirable pod shatter resistance by downregulating the LcIND gene using RNAi in field cress, and thus speeding up the domestication process of this wild species.


Assuntos
Arabidopsis , Brassicaceae , Lepidium , Lepidium/genética , Interferência de RNA , Regulação para Baixo , Brassicaceae/genética , Arabidopsis/genética , Plantas Geneticamente Modificadas/genética
19.
J Plant Physiol ; 290: 154103, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37788546

RESUMO

Plastocyanin functions as an electron carrier in the photosynthetic electron transport chain, located at the thylakoid membrane. In several species, endogenous plastocyanin levels are correlated with the photosynthetic electron transport rate. Overexpression of plastocyanin genes in Arabidopsis thaliana increases plant size, but this phenomenon has not been observed in crop species. Here, we investigated the effects of heterologous expression of a gene encoding a plastocyanin isoform from Arabidopsis, AtPETE2, in the oil seed crop Camelina sativa under standard growth conditions and under salt stress. AtPETE2 heterologous expression enhanced photosynthetic activity in Camelina, accelerating plant development and improving seed yield under standard growth conditions. Additionally, CsPETE2 from Camelina was induced by salt stress and AtPETE2 expression lines had larger primary roots and more lateral roots than the wild type. AtPETE2 expression lines also had larger seeds and higher total seed yield under long-term salt stress compared with non-transgenic Camelina. Our results demonstrate that increased plastocyanin levels in Camelina can enhance photosynthesis and productivity, as well as tolerance to osmotic and salt stresses. Heterologous expression of plastocyanin may be a useful strategy to mitigate crop stress in saline soils.


Assuntos
Arabidopsis , Brassicaceae , Plastocianina/genética , Plastocianina/metabolismo , Tolerância ao Sal/genética , Brassicaceae/genética , Brassicaceae/metabolismo , Arabidopsis/metabolismo , Sementes/metabolismo
20.
Cell ; 186(22): 4773-4787.e12, 2023 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-37806310

RESUMO

Pollen-pistil interactions establish interspecific/intergeneric pre-zygotic hybridization barriers in plants. The rejection of undesired pollen at the stigma is crucial to avoid outcrossing but can be overcome with the support of mentor pollen. The mechanisms underlying this hybridization barrier are largely unknown. Here, in Arabidopsis, we demonstrate that receptor-like kinases FERONIA/CURVY1/ANJEA/HERCULES RECEPTOR KINASE 1 and cell wall proteins LRX3/4/5 interact on papilla cell surfaces with autocrine stigmatic RALF1/22/23/33 peptide ligands (sRALFs) to establish a lock that blocks the penetration of undesired pollen tubes. Compatible pollen-derived RALF10/11/12/13/25/26/30 peptides (pRALFs) act as a key, outcompeting sRALFs and enabling pollen tube penetration. By treating Arabidopsis stigmas with synthetic pRALFs, we unlock the barrier, facilitating pollen tube penetration from distantly related Brassicaceae species and resulting in interspecific/intergeneric hybrid embryo formation. Therefore, we uncover a "lock-and-key" system governing the hybridization breadth of interspecific/intergeneric crosses in Brassicaceae. Manipulating this system holds promise for facilitating broad hybridization in crops.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Hormônios Peptídicos , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Brassicaceae/genética , Brassicaceae/metabolismo , Hormônios Peptídicos/metabolismo , Peptídeos/metabolismo , Pólen/metabolismo , Tubo Polínico/metabolismo , Isolamento Reprodutivo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...